By Topic

Relative Intensity Noise Transfer Reduction in Raman-Assisted BOTDA Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

Raman-assistance (RA) has been identified as a promising technique to extend the measurement range of Brillouin optical time-domain analysis (BOTDA)-based distributed sensors. Unfortunately, Raman amplification introduces a great amount of relative intensity noise (RIN) to the detected low-frequency probe wave. This RIN transfer problem has been widely identified as a major limitation in RA-BOTDA. In vector BOTDA (VBOTDA), the detected signal is transferred to a high-frequency carrier where the Raman RIN transfer turns out to be much less harmful. In addition, a VBOTDA can also provide information about the phase-shift induced by the local stimulated Brillouin scattering gain curve, paving the way for dynamic measurements. In this letter, we demonstrate, for the first time to our knowledge, the RA in a VBOTDA obtaining gain and phase measurements. Our results show a significant reduction of the RIN transfer effect in RA-VBOTDA compared with standard RA-BOTDA, making this type of scheme particularly interesting for long-range and dynamic distributed sensing.

Published in:

Photonics Technology Letters, IEEE  (Volume:26 ,  Issue: 3 )