By Topic

Multi-Level Coded Modulation for 16-ary Constellations in Presence of Phase Noise

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ramtin Farhoudi ; Dept. of Electr. Eng., Laval Univ., Quebec City, QC, Canada ; Leslie Ann Rusch

Application of multi-level coded modulation (MLCM) for 16-ary constellations in coherent systems is studied. An MLCM system with Reed-Solomon component codes and multi-stage decoder is considered. A systematic numerical method for finding set-partitioning and optimal code rates is presented. The method only requires the probability density function of received samples and can be applied to any constellation regardless of irregularity or lack of symmetry. Performance of the designed MLCM system is verified in presence of nonlinear phase noise and normal phase noise. For nonlinear phase noise limited system, it is shown that the block error rate (BLER) of the system can be improved using our approach for set-partitioning. For phase noise limited system, both BLER and bit error rate (BER) are studied for a phase noise optimized and square 16-quadrature amplitude modulation (16QAM). Post forward-error correction (FEC) BER performance of the optimized constellation over square 16QAM is studied for different levels of phase noise. It is shown that the optimized constellation along with MLCM system decreases the required signal-to-noise ratio by several dB at high phase noise regime and low post FEC BER.

Published in:

Journal of Lightwave Technology  (Volume:32 ,  Issue: 6 )