By Topic

Non-line-of-sight ultraviolet communication performance in atmospheric turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zuo Yong ; State Key Lab. of Inf. Photonics & Opt. Commun., Beijing Univ. of Posts & Telecommun., Beijing, China ; Wu Jian ; Xiao Houfei ; Lin Jintong

Non-Line-of-Sight (NLOS) Ultraviolet (UV) communication uses the atmosphere as a propagation medium. As the communication range increases, turbulence becomes a significant atmospheric process that affects the propagation of optical waves. This paper presents a more accurate NLOS channel model by considering turbulence-induced Scintillation Attenuation (SA). Then, the Bit Error Rate (BER) during turbulence of the NLOS UV communication system with On-Off Keying (OOK) modulation and Maximum Likelihood (ML) detection is analysed and compared with that in free space without turbulence. The BER dependence is also analysed for different factors, including the refractive index structure parameter, transceiver range, pointing angles, transmitted power, and data rate.

Published in:

Communications, China  (Volume:10 ,  Issue: 11 )