By Topic

Observer-Based Optical Manipulation of Biological Cells With Robotic Tweezers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Chien Chern Cheah ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore ; Xiang Li ; Xiao Yan ; Dong Sun

While several automatic manipulation techniques have recently been developed for optical tweezer systems, the measurement of the velocity of cell is required and the interaction between the cell and the manipulator of laser source is usually ignored in these formulations. Although the position of cell can be measured by using a camera, the velocity of cell is not measurable and usually estimated by differentiating the position of cell, which amplifies noises and may induce chattering of the system. In addition, it is also assumed in existing methods that the image Jacobian matrix from the Cartesian space to image space of the camera is exactly known. In the presence of estimation errors or variations of depth information between the camera and the cell, it is not certain whether the stability of the system could still be ensured. In this paper, vision-based observer techniques are proposed for optical manipulation to estimate the velocity of cell. Using the proposed observer techniques, tracking control strategies are developed to manipulate biological cells with different Reynolds numbers, which do not require camera calibration and measurement of the velocity of cell. The control methods are based on the dynamic formulation where the laser source is controlled by the closed-loop robotic manipulation technique. The stability is analyzed using Lyapunov-like analysis. Simulation and experimental results are presented to illustrate the performance of the proposed cell manipulation methods.

Published in:

Robotics, IEEE Transactions on  (Volume:30 ,  Issue: 1 )