By Topic

Augmentation of transient stability using a superconducting coil and adaptive nonlinear control

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yoke Lin Tan ; Sch. of Electr. & Electron. Eng., Nanyang Technol. Inst., Singapore ; Youyi Wang

The very nonlinear nature of the generator and system behaviour following a severe disturbance precludes the use of classical linear control techniques. In this paper, a nonlinear adaptive excitation and a thyristor-controlled superconducting magnetic energy storage (SMES) unit is proposed to enhance the transient stability of a power system with unknown or varying parameters like equivalent reactances of the transmission lines. The SMES unit is located near the generator bus terminal in a power system. A nonlinear feedback control law is found which linearizes and decouples the power system. An adaptive control law is used to design the controller for the generator excitation and SMES system. Simulation results demonstrate that the proposed controller can ensure transient stability of a single-machine-infinite-bus system under a large sudden fault which may occur near the generator bus terminal

Published in:

IEEE Transactions on Power Systems  (Volume:13 ,  Issue: 2 )