Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

The design and implementation of seeded trees: an efficient method for spatial joins

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ming-Ling Lo ; IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA ; Ravishankar, C.V.

Existing methods for spatial joins require pre-existing spatial indices or other precomputation, but such approaches are inefficient and limited in generality. Operand data sets of spatial joins may not all have precomputed indices, particularly when they are dynamically generated by other selection or join operations. Also, existing spatial indices are mostly designed for spatial selections, and are not always efficient for joins. This paper explores the design and implementation of seeded trees, which are effective for spatial joins and efficient to construct at join time. Seeded trees are R-tree-like structures, but divided into seed levels and grown levels. This structure facilitates using information regarding the join to accelerate the join process, and allows efficient buffer management. In addition to the basic structure and behavior of seeded trees we present techniques for efficient seeded tree construction, a new buffer management strategy to lower I/O costs, and theoretical analysis for choosing algorithmic parameters. We also present methods for reducing space requirements and improving the stability of seeded tree performance with no additional I/O costs. Our performance studies show that the seeded tree method outperforms other tree-based methods by far both in terms of the number disk pages accessed and weighted I/O costs. Further, its performance gain is stable across different input data, and its incurred CPU penalties are also lower

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:10 ,  Issue: 1 )