Cart (Loading....) | Create Account
Close category search window

Finite-Horizon H_{\infty } Fault Estimation for Uncertain Linear Discrete Time-Varying Systems With Known Inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bo Shen ; Sch. of Inf. Sci. & Technol., Donghua Univ., Shanghai, China ; Ding, S.X. ; Zidong Wang

In this brief, the finite-horizon H fault estimation problem is investigated for a class of uncertain linear discrete time-varying systems with known inputs. A new H performance index including the known inputs is put forward in order to better reflect the effect of the known input on the whole fault estimation systems. To cope with the uncertainties, an auxiliary system is constructed with a certain indefinite quadratic form. By recurring to the Krein-space theory, the optimization problem of the associated indefinite quadratic form is solved, and a sufficient condition with much less conservativeness is established for the existence of the desired fault estimator. Then, all the estimator parameters are derived simultaneously in terms of an explicit solution to a matrix equation. Finally, an illustrative numerical example is employed to demonstrate the effectiveness of the proposed fault estimation scheme.

Published in:

Circuits and Systems II: Express Briefs, IEEE Transactions on  (Volume:60 ,  Issue: 12 )

Date of Publication:

Dec. 2013

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.