By Topic

Pulse-coupled neural network feature generation model for Arabic sign language recognition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

Many feature generation methods have been developed for object recognition. Some of these methods succeeded in achieving invariance against object translation, rotation and scaling but faced problems of the bright background effect and non-uniform light on the quality of the generated features. This problem has hindered recognition systems from working in a free environment. This paper proposes a new method to enhance the feature quality based on pulse-coupled neural network. An adaptive model that defines continuity factor is proposed as a weight factor of the current pulse in signature generation process. The proposed new method has been employed in a hybrid feature extraction model that is followed by a classifier and was applied and tested in Arabic sign language static hand posture recognition; the superiority of the new method is shown.

Published in:

Image Processing, IET  (Volume:7 ,  Issue: 9 )