By Topic

On the Dispersions of Three Network Information Theory Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tan, V.Y.F. ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Kosut, O.

We analyze the dispersions of distributed lossless source coding (the Slepian-Wolf problem), the multiple-access channel, and the asymmetric broadcast channel. For the two-encoder Slepian-Wolf problem, we introduce a quantity known as the entropy dispersion matrix, which is analogous to the scalar dispersions that have gained interest recently. We prove a global dispersion result that can be expressed in terms of this entropy dispersion matrix and provides intuition on the approximate rate losses at a given blocklength and error probability. To gain better intuition about the rate at which the nonasymptotic rate region converges to the Slepian-Wolf boundary, we define and characterize two operational dispersions: 1) the local dispersion and 2) the weighted sum-rate dispersion. The former represents the rate of convergence to a point on the Slepian-Wolf boundary, whereas the latter represents the fastest rate for which a weighted sum of the two rates converges to its asymptotic fundamental limit. Interestingly, when we approach either of the two corner points, the local dispersion is characterized not by a univariate Gaussian, but a bivariate one as well as a subset of off-diagonal elements of the aforementioned entropy dispersion matrix. Finally, we demonstrate the versatility of our achievability proof technique by providing inner bounds for the multiple-access channel and the asymmetric broadcast channel in terms of dispersion matrices. All our proofs are unified by a so-called vector rate redundancy theorem, which is proved using the multidimensional Berry-Esséen theorem.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 2 )