By Topic

Design and Fabrication of Photonic Crystal Nano-Beam Resonator: Transmission Line Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
M. Miri ; Dept. of Electr. Eng., Sharif Univ. of Technol., Tehran, Iran ; M. Sodagar ; K. Mehrany ; A. A. Eftekhar
more authors

We present a new method for modeling and design of photonic crystal nano-beam resonators (PCNBRs) based on cascaded transmission lines. The proposed model provides an accurate estimate of the PCNBRs properties such as resonance wavelength and quality factor (Q) with much smaller computation cost as compared to the brute-force numerical methods. Furthermore, we have developed a straightforward technique for the design of high-Q PCNBRs based on resonance modes with Gaussian electromagnetic field profiles. The results obtained by using the proposed transmission line model are compared against numerical and experimental results and the accuracy of the model is verified. The proposed model provides an insight to silicon cavity design and significantly reduces computational burden.

Published in:

Journal of Lightwave Technology  (Volume:32 ,  Issue: 1 )