By Topic

Detection of Life-Threatening Arrhythmias Using Feature Selection and Support Vector Machines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Alonso-Atienza, F. ; Dept. of Signal Theor. & Commun., Rey Juan Carlos Univ., Fuenlabrada, Spain ; Morgado, E. ; Fernandez-Martinez, L. ; Garcia-Alberola, A.
more authors

Early detection of ventricular fibrillation (VF) and rapid ventricular tachycardia (VT) is crucial for the success of the defibrillation therapy. A wide variety of detection algorithms have been proposed based on temporal, spectral, or complexity parameters extracted from the ECG. However, these algorithms are mostly constructed by considering each parameter individually. In this study, we present a novel life-threatening arrhythmias detection algorithm that combines a number of previously proposed ECG parameters by using support vector machines classifiers. A total of 13 parameters were computed accounting for temporal (morphological), spectral, and complexity features of the ECG signal. A filter-type feature selection (FS) procedure was proposed to analyze the relevance of the computed parameters and how they affect the detection performance. The proposed methodology was evaluated in two different binary detection scenarios: shockable (FV plus VT) versus nonshockable arrhythmias, and VF versus nonVF rhythms, using the information contained in the medical imaging technology database, the Creighton University ventricular tachycardia database, and the ventricular arrhythmia database. sensitivity (SE) and specificity (SP) analysis on the out of sample test data showed values of SE=95%, SP=99%, and SE=92% , SP=97% in the case of shockable and VF scenarios, respectively. Our algorithm was benchmarked against individual detection schemes, significantly improving their performance. Our results demonstrate that the combination of ECG parameters using statistical learning algorithms improves the efficiency for the detection of life-threatening arrhythmias.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:61 ,  Issue: 3 )