By Topic

Rewriting Codes for Flash Memories

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Eitan Yaakobi ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Hessam Mahdavifar ; Paul H. Siegel ; Alexander Vardy
more authors

Flash memory is a nonvolatile computer memory comprising blocks of cells, wherein each cell can take on q different values or levels. While increasing the cell level is easy, reducing the level of a cell can be accomplished only by erasing an entire block. Since block erasures are highly undesirable, coding schemes-known as floating codes (or flash codes) and buffer codes-have been designed in order to maximize the number of times that information stored in a flash memory can be written (and rewritten) prior to incurring a block erasure. An (n,k,t)q flash code ℂ is a coding scheme for storing k information bits in n cells in such a way that any sequence of up to t writes can be accommodated without a block erasure. The total number of available level transitions in n cells is n(q-1), and the write deficiency of ℂ, defined as δ(ℂ)=n(q-1)-t, is a measure of how close the code comes to perfectly utilizing all these transitions. In this paper, we show a construction of flash codes with write deficiency O(q k log k) if q ≥ log2 k, and at most O(klog2k) otherwise. An (n,r,l,t)q buffer code is a coding scheme for storing a buffer of r l-ary symbols such that for any sequence of t symbols, it is possible to successfully decode the last r symbols that were written. We improve upon a previous upper bound on the maximum number of writes t in the case where there is a single cell to store the buffer. Then, we show how to improve a construction by Jiang that uses multiple cells, where n ≥ 2r.

Published in:

IEEE Transactions on Information Theory  (Volume:60 ,  Issue: 2 )