Cart (Loading....) | Create Account
Close category search window
 

Noise Analysis in Pulse-Processing Discrete-Time Filters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Avila, D. ; Dept. of Electr. Eng., Pontificia Univ. Catolica de Chile, Santiago, Chile ; Alvarez, E. ; Abusleme, A.

Discrete-time filters represent a promising solution for pulse-processing in high-energy physics experiments due to their flexibility, reliability, and their capability to synthesize weighting functions with virtually any shape. One of the major concerns when designing one of these filters is to calculate the filter parameters that maximize the signal-to-noise ratio. The classic way to address this problem is to perform the noise analysis using a continuous-time domain approach based on the weighting function concept. However, when addressing the problem from an inadequate time domain, the analysis is not insightful and the resulting expressions are complex and difficult to use for design purposes. In this work, a mathematical framework for a design-oriented analysis of discrete-time filters in the discrete-time domain is presented. This analysis is based on treating the sampled noise as a discrete-time signal, which can be manipulated to obtain a closed-form expression for the front-end noise, suitable for computer automatic evaluation and filter optimization procedures. An example of the optimum filter formulation and computation is presented, in addition to several conclusions about optimum digital filtering.

Published in:

Nuclear Science, IEEE Transactions on  (Volume:60 ,  Issue: 6 )

Date of Publication:

Dec. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.