By Topic

Ultra-Low Quantum-Defect Heating in Ytterbium-Doped Aluminosilicate Fibers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tianfu Yao ; Optoelectron. Res. Centre, Univ. of Southampton, Southampton, UK ; Junhua Ji ; Nilsson, J.

We theoretically investigate the quantum defect between pump and signal photons in ytterbium-doped fiber lasers and amplifiers, and find that this can be as low as 0.6%. We find that the lowest quantum defects can be achieved with a low area ratio between the pump and signal waveguide of a double-clad fiber, and with high-brightness pumping in the core being an ultimate approach. The change in achievable quantum defect is small over a relatively large range of pump wavelengths, but it is still necessary to optimize the wavelengths and match the fiber length to reach the smallest quantum defect.

Published in:

Lightwave Technology, Journal of  (Volume:32 ,  Issue: 3 )