By Topic

Exponential Error Bounds on Parameter Modulation–Estimation for Discrete Memoryless Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Neri Merhav ; Dept. of Electr. Eng., Technion - Israel Inst. of Technol., Haifa, Israel

We consider the problem of modulation and estimation of a random parameter U to be conveyed across a discrete memoryless channel. Upper and lower bounds are derived for the best achievable exponential decay rate of a general moment of the estimation error, E|Û-U|ρ, ρ ≥ 0, when both the modulator and the estimator are subjected to optimization. These exponential error bounds turn out to be intimately related to error exponents of channel coding and to channel capacity. While in general, there is some gap between the upper and the lower bounds, they asymptotically coincide both for very small and for very large values of the moment power ρ. This means that our achievability scheme, which is based on simple quantization of U followed by channel coding, is nearly optimum in both limits. Some additional properties of the bounds are discussed and demonstrated, and finally, an extension to the case of a multidimensional parameter vector is outlined, with the principal conclusion that our upper and lower bounds asymptotically coincide also for a high dimensionality.

Published in:

IEEE Transactions on Information Theory  (Volume:60 ,  Issue: 2 )