Cart (Loading....) | Create Account
Close category search window
 

Verifiable Privacy-Preserving Multi-keyword Text Search in the Cloud Supporting Similarity-based Ranking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Sun, W. ; Xidian University, Xi'an and Virginia Tech, Blacksburg ; Wang, B. ; Cao, N. ; Li, M.
more authors

With the growing popularity of cloud computing, huge amount of documents are outsourced to the cloud for reduced management cost and ease of access. Although encryption helps protecting user data confidentiality, it leaves the well-functioning yet practically-efficient secure search functions over encrypted data a challenging problem. In this paper, we present a verifiable privacy-preserving multi-keyword text search (MTS) scheme with similarity-based ranking to address this problem. To support multi-keyword search and search result ranking, we propose to build the search index based on term frequency and the vector space model with cosine similarity measure to achieve higher search result accuracy. To improve the search efficiency, we propose a tree-based index structure and various adaptive methods for multi-dimensional (MD) algorithm so that the practical search efficiency is much better than that of linear search. To further enhance the search privacy, we propose two secure index schemes to meet the stringent privacy requirements under strong threat models, i.e., known ciphertext model and known background model. In addition, we devise a scheme upon the proposed index tree structure to enable authenticity check over the returned search results. Finally, we demonstrate the effectiveness and efficiency of the proposed schemes through extensive experimental evaluation.

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.