By Topic

Sparse Representation of a Polytope and Recovery of Sparse Signals and Low-Rank Matrices

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Cai, T.T. ; Dept. of Stat., Univ. of Pennsylvania, Philadelphia, PA, USA ; Anru Zhang

This paper considers compressed sensing and affine rank minimization in both noiseless and noisy cases and establishes sharp restricted isometry conditions for sparse signal and low-rank matrix recovery. The analysis relies on a key technical tool, which represents points in a polytope by convex combinations of sparse vectors. The technique is elementary while yielding sharp results. It is shown that for any given constant t ≥ 4/3, in compressed sensing, δtkA <; √((t-1)/t) guarantees the exact recovery of all k sparse signals in the noiseless case through the constrained l1 minimization, and similarly, in affine rank minimization, δtrM <; √((t-1)/t) ensures the exact reconstruction of all matrices with rank at most r in the noiseless case via the constrained nuclear norm minimization. In addition, for any ε > 0, δtkA <; √(t-1/t) + ε is not sufficient to guarantee the exact recovery of all k-sparse signals for large k. Similar results also hold for matrix recovery. In addition, the conditions δtkA <; √((t-)1/t) and δtrM <; √((t-1)/t) are also shown to be sufficient, respectively, for stable recovery of approximately sparse signals and low-rank matrices in the noisy case.

Published in:

Information Theory, IEEE Transactions on  (Volume:60 ,  Issue: 1 )