By Topic

On the Weight Hierarchy of Codes Coming From Semigroups With Two Generators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Manuel Delgado ; CMUP, Departamento de Matemática, Faculdade de Ciências, Universidade do Porto, Porto, Portugal ; José I. Farrán ; Pedro A. García-Sánchez ; David Llena

The weight hierarchy of one-point algebraic geometry codes can be estimated by means of the generalized order bounds, which are described in terms of a certain Weierstrass semigroup. The asymptotical behavior of such bounds for r ≥ 2 differs from that of the classical Feng-Rao distance (r=1) by the so-called Feng-Rao numbers. This paper is addressed to compute the Feng-Rao numbers for numerical semigroups of embedding dimension two (with two generators), obtaining a closed simple formula for the general case by using numerical semigroup techniques. These involve the computation of the Apéry set with respect to an integer of the semigroups under consideration. The formula obtained is applied to lower bounding the generalized Hamming weights, improving the bound given by Kirfel and Pellikaan in terms of the classical Feng-Rao distance. We also compare our bound with a modification of the Griesmer bound, improving this one in many cases.

Published in:

IEEE Transactions on Information Theory  (Volume:60 ,  Issue: 1 )