By Topic

EPE: An Embedded Personalization Engine for Mobile Users

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
JongWoo Ha ; Korea Univ., Seoul, South Korea ; Jung-Hyun Lee ; Sangkeun Lee

The proposed embedded personalization engine (EPE) utilizes valuable in-device usage data for inferring mobile user interests in a privacy-preserving manner. To provide users with personalized services, the proposed approach analyzes both the usage data inside a mobile device and service items--such as news articles and mobile apps--using the Open Directory Project (ODP) as a knowledge base. Embedded classification and ranking methodologies effectively match such service items with inferred user interests. The scenario-based evaluation clearly shows that the proposed EPE gives users highly personalized services with both reasonable perceived latency and little energy consumption.

Published in:

Internet Computing, IEEE  (Volume:18 ,  Issue: 1 )