By Topic

Portable Parallel Programs with Python and OpenCL

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)

Two Python modules are presented: pyOpenCL, a library that enables programmers to write Open Common Language (OpenCL) code within Python programs; and ocl, a Python-to-C converter that lets developers write OpenCL kernels using the Python syntax. Like CUDA, OpenCL is designed to run on multicore GPUs. OpenCL code can also run on other architectures, including ordinary CPUs and mobile devices, always taking advantage of their multicore capabilities. Combining Python, numerical Python (numPy), pyOpenCL, and ocl creates a powerful framework for developing efficient parallel programs that work on modern heterogeneous architectures. Open Common Language (OpenCL) runs on multicore GPUs, as well as other architectures including ordinary CPUs and mobile devices. Combining OpenCL with numerical Python (numPy) and a new module - ocl, a Python-to-C converter that lets developers use Python to write OpenCL kernels - creates a powerful framework for developing efficient parallel programs for modern heterogeneous architectures.

Published in:

Computing in Science & Engineering  (Volume:16 ,  Issue: 1 )