By Topic

Comparison of Mixed-Integer Programming and Genetic Algorithm Methods for Distributed Generation Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
James D. Foster ; Sch. of Math. & Phys. Sci., Univ. of Newcastle, Callaghan, NSW, Australia ; Adam M. Berry ; Natashia Boland ; Hamish Waterer

This paper applies recently developed mixed-integer programming (MIP) tools to the problem of optimal siting and sizing of distributed generators in a distribution network. We investigate the merits of three MIP approaches for finding good installation plans: a full AC power flow approach, a linear DC power flow approximation, and a nonlinear DC power flow approximation with quadratic loss terms, each augmented with integer generator placement variables. A genetic algorithm-based approach serves as a baseline for the comparison. A simple knapsack problem method involving generator selection is presented for determining lower bounds on the optimal design objective. Solution methods are outlined, and computational results show that the MIP methods, while lacking the speed of the genetic algorithm, can find improved solutions within conservative time requirements and provide useful information on optimality.

Published in:

IEEE Transactions on Power Systems  (Volume:29 ,  Issue: 2 )