By Topic

Preserving Structure in Model-Free Tracking

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lu Zhang ; Dept. of Intell. Syst., Delft Univ. of Technol., Delft, Netherlands ; van der Maaten, L.J.P.

Model-free trackers can track arbitrary objects based on a single (bounding-box) annotation of the object. Whilst the performance of model-free trackers has recently improved significantly, simultaneously tracking multiple objects with similar appearance remains very hard. In this paper, we propose a new multi-object model-free tracker (using a tracking-by-detection framework) that resolves this problem by incorporating spatial constraints between the objects. The spatial constraints are learned along with the object detectors using an online structured SVM algorithm. The experimental evaluation of our structure-preserving object tracker (SPOT) reveals substantial performance improvements in multi-object tracking. We also show that SPOT can improve the performance of single-object trackers by simultaneously tracking different parts of the object. Moreover, we show that SPOT can be used to adapt generic, model-based object detectors during tracking to tailor them towards a specific instance of that object.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 4 )
Biometrics Compendium, IEEE