Cart (Loading....) | Create Account
Close category search window
 

Reflexive Field Containment in Dynamic Inductive Power Transfer Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
3 Author(s)
Lee, K. ; Kibok Lee is with the Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695 USA (e-mail: klee10@ncsu.edu) ; Pantic, Z. ; Lukic, S.

We present a new topology appropriate for “dynamic” wireless charging. Possible applications include charging of electric vehicles or robots moving in a large, pre-designated area. We propose a system with a transmitter made from multiple coils commensurable with the moving receiver(s), and powered by a single inverter. The proposed system uses the reactance reflected by the receiver, to automatically increase the field strength in coupled portions of the transmitter-receiver system, thus allowing efficient power transfer and adherence to electromagnetic field emission standards without complex shielding circuits, switches, electronics and communication. The power transfer is at its peak when the transmitting and receiving coils approach their maximum coupling (as defined by the geometrical constraints of the system), resulting in improved system-level efficiency. The presented analysis is supported with simulations and experiments.

Published in:

Power Electronics, IEEE Transactions on  (Volume:PP ,  Issue: 99 )

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.