By Topic

A Novel Eye Localization Method With Rotation Invariance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Ren ; Key Lab. of Intell. Perception & Image Understanding of Minist. of Educ., Xidian Univ., Xi'an, China ; Shuang Wang ; Biao Hou ; Jingjing Ma

This paper presents a novel learning method for precise eye localization, a challenge to be solved in order to improve the performance of face processing algorithms. Few existing approaches can directly detect and localize eyes with arbitrary angels in predicted eye regions, face images, and original portraits at the same time. To preserve rotation invariant property throughout the entire eye localization framework, a codebook of invariant local features is proposed for the representation of eye patterns. A heat map is then generated by integrating a 2-class sparse representation classifier with a pyramid-like detecting and locating strategy to fulfill the task of discriminative classification and precise localization. Furthermore, a series of prior information is adopted to improve the localization precision and accuracy. Experimental results on three different databases show that our method is capable of effectively locating eyes in arbitrary rotation situations (360° in plane).

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 1 )