Cart (Loading....) | Create Account
Close category search window
 

Shape-Based Normalized Cuts Using Spectral Relaxation for Biomedical Segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pujadas, E.R. ; Dept. of Radiol.; Med. Phys., Univ. Hosp. Freiburg, Freiburg, Germany ; Reisert, M.

We present a novel method to incorporate prior knowledge into normalized cuts. The prior is incorporated into the cost function by maximizing the similarity of the prior to one partition and the dissimilarity to the other. This simple formulation can also be extended to multiple priors to allow the modeling of the shape variations. A shape model obtained by PCA on a training set can be easily integrated into the new framework. This is in contrast to other methods that usually incorporate prior knowledge by hard constraints during optimization. The eigenvalue problem inferred by spectral relaxation is not sparse, but can still be solved efficiently. We apply this method to biomedical data sets as well as natural images of people from a public database and compare it with other normalized cut based segmentation algorithms. We demonstrate that our method gives promising results and can still give a good segmentation even when the prior is not accurate.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 1 )

Date of Publication:

Jan. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.