Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

Review of Microcrack Detection Techniques for Silicon Solar Cells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Abdelhamid, M. ; Int. Center for Automotive Res., Clemson Univ., Greenville, SC, USA ; Singh, R. ; Omar, M.

Microcracks at the device level in bulk solar cells are the current subject of substantial research by the photovoltaic (PV) industry. This review paper addresses nondestructive testing techniques that are used to detect microfacial and subfacial cracks. In this paper, we mainly focused on mono- and polycrystalline silicon PV devices and the root causes of the cracks in solar cells are described. We have categorized these cracks based on size and location in the wafer. The impact of the microcracks on electrical and mechanical performance of silicon solar cells is reviewed. For the first time, we have used the multi-attribute decision-making method to evaluate the different inspection tools that are available on the market. The decision-making tool is based on the analytical hierarchy process and our approach enables the ranking of the inspection tools for PV production stages, which have conflicting objectives and multi-attribute constraints.

Published in:

Photovoltaics, IEEE Journal of  (Volume:4 ,  Issue: 1 )