By Topic

Safety Verification of Automated Driving Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kianfar, R. ; Dept. of Signals & Syst., Chalmers Univ. of Technol., Göteborg, Sweden ; Falcone, P. ; Fredriksson, J.

In this paper, a set based approach is presented for safety verification and performance analysis of automated driving systems. As an example, reachability analysis technique is used to study the minimum required safe inter-vehicle distance for two given adaptive cruise controllers, a state feedback and a state feedback/feedforward controller designed based on mixed d H2/3 control. Not surprisingly, the results indicate that a shorter inter-vehicle distance can be achieved when a feedforward term used in the controller. In addition, we show how backward reachability analysis and invariant set theory can be used to find the Maximal Admissible Safe Set. This is defined as the set of position error, relative speeds and acceleration, which a given controller is guaranteed to control to the desired speed and inter-vehicle distance, while fulfilling vehicle physical constraints and avoiding rear-end collisions with the preceding vehicle. The calculation of the Maximal Admissible Safe Set is demonstrated for the two aforementioned controllers. Furthermore, the presented verification method is extended to account for the case of vehicle model with polytopic uncertainties and delay. The results on the reachability analysis are verified experimentally using an emergency braking scenario.

Published in:

Intelligent Transportation Systems Magazine, IEEE  (Volume:5 ,  Issue: 4 )