By Topic

A Novel Joint RFID and Radar Sensor Network for Passive Localization: Design and Performance Bounds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Decarli, N. ; DEI, Univ. of Bologna, Bologna, Italy ; Guidi, F. ; Dardari, D.

Nowadays, passive and semi-passive wireless devices are increasing their appeal, particularly in the new scenario of the Internet of Things, thanks to their low complexity and low energy consumption. In this context, radio-frequency identification (RFID) and radar sensor networks (RSNs) are rising interest when the localization of (semi-)passive tags (without active transmitters) and moving passive objects is required. In this paper, we propose a novel network architecture capable of jointly localizing (semi-)passive tags and moving passive objects through the analysis of their backscattered response. The reciprocal interference in objects/tags localization arising from the signal variations caused by objects' and tags' movement is characterized. We present an analytical derivation, based on the Cramér-Rao bound, providing the theoretical localization accuracy of tags and passive objects. The proposed approach represents a fundamental design tool providing insights on how system parameters (power and signal format), network topology, interference, and network configuration (monostatic or multistatic) affect the localization performance.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:8 ,  Issue: 1 )