Cart (Loading....) | Create Account
Close category search window
 

Characterization of adhesive materials for high circuit density applications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Aschenbrenner, R. ; Fraunhofer-Inst. fur Zuverlassigkeit und Mikrointegration, Berlin, Germany ; Miessner, R. ; Becker, K.-F. ; Reichl, H.

This report presents the results of the evaluation of isotropic and anisotropic conductive adhesives for flip chip and chip size package applications. Samples consist of bumped testchips mounted on fine pitch rigid and flexible substrates. The finest pitch of the rigid glass substrates is 70 μm and for the flexible substrates 100 μm. Promising candidate for adhesive joining technique are the isotropic conductive adhesives. These adhesives are isotropic, which means that they conduct electricity equally in all directions. To use such adhesives in flip chip applications, the material has to be applied precisely onto the points to be connected, and is not allowed to flow and short circuit between circuit lines. The anisotropicaliy conductive adhesive materials are prepared by dispersing electrically conductive particles in an adhesive matrix at a concentration that is high enough to assure reliable conductivity between the substrate and the IC electrodes. The reliability evaluation was performed with special regard to the degradation and to the interface reactions between polymers and metal surfaces in adhesive contacts. The electrical and mechanical performance of the adhesive bonds were studied by evaluating initial contact resistance and mechanical adhesion as a function of temperature and humidity. A detailed thermo-mechanical analysis was used to determine the optimal cure schedule and to characterize the materials according to their physical properties. This kind of analysis method has also been used to optimize the curing profile, i.e. to shorten the curing time

Published in:

Advanced Packaging Materials, 1998. Proceedings. 1998 4th International Symposium on

Date of Conference:

15-18 Mar 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.