Cart (Loading....) | Create Account
Close category search window
 

Thermal greases with exceptionally high thermal conductivity and low thermal resistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hunadi, R. ; Thermoset Plastics Inc., Camarillo, CA, USA ; Wells, R.

The need for higher performance thermal interface materials has been spurred by the higher thermal demands of new microprocessors, MCMs and other high speed devices. These devices typically produce 10-40 watts of heat. Many applications require the use of a removable interface material along with the need to minimize the bond line and thermal resistance. In addition, greases can compensate for surface nonplanarity approaching 3-4 mils for heat sinks and device packages. In the past several years, a number of diamond filled greases, with claims of high thermal conductivity, have been reported but these products were not practical for low cost consumer applications such as severs, desktop and laptop computers. Other fillers such as boron nitride and aluminum nitride have also been used but most of the previous available fillers were optimized for use in producing ceramic substrates and not for use in polymer based systems. We would like to present our results on the development of a series of high thermal conductivity, cost effective, easy to use greases. In addition to thermal, physical and electrical properties, we will summarize reliability test data including temperature cycling, temperature/humidity exposure and high temperature aging

Published in:

Advanced Packaging Materials, 1998. Proceedings. 1998 4th International Symposium on

Date of Conference:

15-18 Mar 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.