By Topic

Symbolic Representation and Computation of Timed Discrete-Event Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Miremadi, S. ; Dept. of Signals & Syst., Autom. Res. Group, Chalmers Univ. of Technol., Gothenburg, Sweden ; Fei, Z. ; Akesson, K. ; Lennartson, B.

In this paper, we symbolically represent timed discrete-event systems (TDES), which can be used to efficiently compute the supervisor in the supervisory control theory context. We model a TDES based on timed extended finite automata (TEFAs): an augmentation of extended finite automata (EFAs) by incorporating discrete time into the model. EFAs are ordinary automata extended with discrete variables, where conditional expressions and update functions can be attached to the transitions. The symbolic computations are based on binary decision diagrams (BDDs). We show how TEFAs can be represented by BDDs. The main feature of this approach is that the BDD-based fixed point computations are not based on tick models that have been commonly used in this area, leading to better performance in many cases. The approach has been implemented and applied to a simple case study and several large-scale benchmarks.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:11 ,  Issue: 1 )