Cart (Loading....) | Create Account
Close category search window
 

A statistical basis for lognormal shadowing effects in multipath fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Coulson, A.J. ; Commun. Team, Ind. Res. Ltd., Lower Hutt, New Zealand ; Williamson, A.G. ; Vaughan, R.G.

Empirical justifications for the lognormal, Rayleigh and Suzuki (1977) probability density functions in multipath fading channels are examined by quantifying the rates of convergence of the central limit theorem (CLT) for the addition and multiplication of random variables. The accuracy of modeling the distribution of rays which experience multiple reflections/diffractions between transmitter and receiver as lognormal is quantified. In addition, it is shown that the vector sum of lognormal rays, such as in a narrow-band signal envelope, may best be approximated as being either Rayleigh, lognormal or Suzuki distributed depending on the fading channel conditions. These conditions are defined statistically

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 4 )

Date of Publication:

Apr 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.