By Topic

Algorithms for automatic modulation recognition of communication signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Nandi, A.K. ; Dept. of Electron. & Electr. Eng., Strathclyde Univ., Glasgow, UK ; Azzouz, E.E.

This paper introduces two algorithms for analog and digital modulations recognition. The first algorithm utilizes the decision-theoretic approach in which a set of decision criteria for identifying different types of modulations is developed. In the second algorithm the artificial neural network (ANN) is used as a new approach for the modulation recognition process. Computer simulations of different types of band-limited analog and digitally modulated signals corrupted by band-limited Gaussian noise sequences have been carried out to measure the performance of the developed algorithms. In the decision-theoretic algorithm it is found that the overall success rate is over 94% at the signal-to-noise ratio (SNR) of 15 dB, while in the ANN algorithm the overall success rate is over 96% at the SNR of 15 dB

Published in:

Communications, IEEE Transactions on  (Volume:46 ,  Issue: 4 )