By Topic

Low-IF topologies for high-performance analog front ends of fully integrated receivers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Crols, J. ; Katholieke Univ., Leuven, Belgium ; Steyaert, M.S.J.

When it comes to integratability, the zero-intermediate frequency (IF) receiver is an alternative for the heterodyne or IF receiver. In recent years, the zero-IF receiver has been introduced in several applications, but its performance cannot be compared to that of the IF receiver yet. This lower performance is closely related to its baseband operation, resulting in filter saturation and distortion, both caused by DC-offsets and self-mixing at the inputs of the mixers. The low-IF receiver has a topology which is closely related to the zero-IF receiver, but it does not operate in the baseband, only near the baseband. The consequences are that, as for the zero-IF receiver, the implementation of a low-IF receiver can be done with a high degree of integration, however, its performance can be better. In this paper, the fundamental principles of the low-IF receiver topology are introduced. Different low-IF receiver topologies are synthesized and fully analyzed in this paper. This is done by applying the complex signal technique-a technique used in digital applications to the study of analog receiver front ends

Published in:

Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on  (Volume:45 ,  Issue: 3 )
RFIC Virtual Journal, IEEE