By Topic

An externally powered, multichannel, implantable stimulator-telemeter for control of paralyzed muscle

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

An implantable integrated stimulator and telemetry system has been developed. The system is capable of fulfilling the stimulus and telemetry needs of advanced functional neuromuscular stimulation (FNS) applications requiring multiple channels of stimulation and multiple channels of sensor or biopotential sensing. This system provides a command control structure, an inductive radio frequency link providing power to the implant device as well as two-way transcutaneous communication, an ASIC for decoding the command and for providing functional control within the implant, and modular circuitry providing the application specific implant functions. Biocompatible hermetic packaging, lead systems, and in-line connectors suitable for long-term implantation, provide encapsulation for the circuitry and access to the electrodes and sensors used in the application. The first implant configuration realized from this modular system is targeted for clinical implementation in persons with tetraplegia at the C6 level for restoration of hand function, using wrist position as the command control source. The implant device realized has ten channels of stimulation and telemetry used to control and sense a joint angle transducer implanted in the radio-carpal joint of the wrist. A prototype device has been fabricated and is undergoing testing in an animal.

Published in:

Biomedical Engineering, IEEE Transactions on  (Volume:45 ,  Issue: 4 )