Cart (Loading....) | Create Account
Close category search window
 

The analysis and design of spatial control systems in strip metal rolling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Duncan, S.R. ; Control Syst. Centre, Univ. of Manchester Inst. of Sci. & Technol., UK ; Allwood, J.M. ; Garimella, S.S.

Commercial pressures on metal strip manufacturers drive ever greater demands on the control of residual stress distributions within the finished strip. Rolling mills in current use have a range of actuators available to attempt this control and new designs are being offered with arrays of similar actuators distributed across the width of the mill. The interaction of these actuators motivates a thorough analysis of spatial control in strip metal rolling. This paper takes theory that has been successfully applied to the paper and plastics industry and applies it for the first time to the strip rolling process, giving a toolkit for the analysis and design of current and future cross-directional control systems. Data from a state of the art commercial mill is used to allow characterization of typical error signals in terms of orthogonal basis functions. Actuators are analyzed to show how much power they have within the “spectrum” of this basis function expansion. Sensors are analyzed to show their filtering effect within the spectrum. The consequent theory is used to give a rationale to future actuator design and a benchmark for the assessment of control performance with existing actuators. Two control strategies are investigated and compared-minimum variance and mini-max-and their achievements characterized. Control system sensitivity is assessed

Published in:

Control Systems Technology, IEEE Transactions on  (Volume:6 ,  Issue: 2 )

Date of Publication:

Mar 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.