Cart (Loading....) | Create Account
Close category search window
 

Algorithmic analysis of nonlinear hybrid systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Henzinger, T.A. ; Dept. of Electr. Eng. & Comput. Sci., California Univ., Berkeley, CA, USA ; Pei-Hsin Ho ; Wong-Toi, H.

We present two methods for translating nonlinear hybrid systems into linear hybrid automata. Properties of the nonlinear systems can then be inferred from the automatic analysis of the translated linear hybrid automata. The first method, called clock translation, replaces constraints on nonlinear variables by constraints on clock variables. The second method, called linear phase-portrait approximation, conservatively overapproximates the phase portrait of a hybrid automaton using piecewise-constant polyhedral differential inclusions. Both methods are sound for safety properties. We illustrate both methods by using HYTECH, a symbolic model checker for linear hybrid automata, to automatically check properties of a nonlinear temperature controller and of a predator-prey ecology

Published in:

Automatic Control, IEEE Transactions on  (Volume:43 ,  Issue: 4 )

Date of Publication:

Apr 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.