By Topic

The multilevel finite element method for adaptive mesh optimization and visualization of volume data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Grosso, R. ; Comput. Graphics Group, Erlangen-Nurnberg Univ., Germany ; Lurig, C. ; Ertl, T.

Multilevel representations and mesh reduction techniques have been used for accelerating the processing and the rendering of large datasets representing scalar- or vector-valued functions defined on complex 2D or 3D meshes. We present a method based on finite element approximations which combines these two approaches in a new and unique way that is conceptually simple and theoretically sound. The main idea is to consider mesh reduction as an approximation problem in appropriate finite element spaces. Starting with a very coarse triangulation of the functional domain, a hierarchy of highly non-uniform tetrahedral (or triangular in 2D) meshes is generated adaptively by local refinement. This process is driven by controlling the local error of the piecewise linear finite element approximation of the function on each mesh element. A reliable and efficient computation of the global approximation error and a multilevel preconditioned conjugate gradient solver are the key components of the implementation. In order to analyze the properties and advantages of the adaptively generated tetrahedral meshes, we implemented two volume visualization algorithms: an iso-surface extractor and a ray-caster. Both algorithms, while conceptually simple, show significant speedups over conventional methods delivering comparable rendering quality from adaptively compressed datasets.

Published in:

Visualization '97., Proceedings

Date of Conference:

24-24 Oct. 1997