By Topic

A cost and speed model for k-ary n-cube wormhole routers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Chein, /A/./A/. ; Dept. of Comput. Sci., Illinois Univ., Urbana, IL

The evaluation of advanced routing features must be based on both of costs and benefits. To date, adaptive routers have generally been evaluated on the basis of the achieved network throughput (channel utilization), ignoring the effects of implementation complexity. In this paper, we describe a parameterized cost model for router performance, characterized by two numbers: router delay and flow control time. Grounding the cost model in a 0.8 micron gate array technology, we use it to compare a number of proposed routing algorithms. From these design studies, several insights into the implementation complexity of adaptive routers are clear. First, header update and selection is expensive in adaptive routers, suggesting that absolute addressing should be reconsidered. Second, virtual channels are expensive in terms of latency and cycle time, so decisions to include them to support adaptivity or even virtual lanes should not be taken lightly. Third, requirements of larger crossbars and more complex arbitration cause some increase in the complexity of adaptive routers, but the rate of increase is small. Last, the complexity of adaptive routers significantly increases their setup delay and flow control cycle times, implying that claims of performance advantages in channel utilization and low load latency must be carefully balanced against losses in achievable implementation speed

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 2 )