By Topic

Multiresolution tetrahedral framework for visualizing regular volume data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yong Zhou ; Center for Visual Comput., State Univ. of New York, Stony Brook, NY, USA ; Chen, B. ; Kaufman, A.

The authors present a multiresolution framework, called Multi-Tetra framework, that approximates volume data with different levels-of-detail tetrahedra. The framework is generated through a recursive subdivision of the volume data and is represented by binary trees. Instead of using a certain level of the Multi-Tetra framework for approximation, an error-based model (EBM) is generated by recursively fusing a sequence of tetrahedra from different levels of the Multi-Tetra framework. The EBM significantly reduces the number of voxels required to model an object, while preserving the original topology. The approach provides continuous distribution of rendered intensity or generated isosurfaces along boundaries of different levels-of-detail thus solving the crack problem. The model supports typical rendering approaches, such as marching cubes, direct volume projection, and splatting. Experimental results demonstrate the strengths of the approach.

Published in:

Visualization '97., Proceedings

Date of Conference:

24-24 Oct. 1997