Cart (Loading....) | Create Account
Close category search window
 

Efficient sparse LU factorization with partial pivoting on distributed memory architectures

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Cong Fu ; Siemens Pyramid Inf. Syst., San Jose, CA., USA ; Xiangmin Jiao ; Tao Yang

A sparse LU factorization based on Gaussian elimination with partial pivoting (GEPP) is important to many scientific applications, but it is still an open problem to develop a high performance GEPP code on distributed memory machines. The main difficulty is that partial pivoting operations dynamically change computation and nonzero fill-in structures during the elimination process. This paper presents an approach called S* for parallelizing this problem on distributed memory machines. The S* approach adopts static symbolic factorization to avoid run-time control overhead, incorporates 2D L/U supemode partitioning and amalgamation strategies to improve caching performance, and exploits irregular task parallelism embedded in sparse LU using asynchronous computation scheduling. The paper discusses and compares the algorithms using 1D and 2D data mapping schemes, and presents experimental studies on Cray-T3D and T3E. The performance results for a set of nonsymmetric benchmark matrices are very encouraging, and S* has achieved up to 6.878 GFLOPS on 128 T3E nodes. To the best of our knowledge, this is the highest performance ever achieved for this challenging problem and the previous record was 2.583 GFLOPS on shared memory machines

Published in:

Parallel and Distributed Systems, IEEE Transactions on  (Volume:9 ,  Issue: 2 )

Date of Publication:

Feb 1998

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.