By Topic

Hyper-systolic parallel computing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
T. Lippert ; HLRZ, Julich, Germany ; A. Seyfried ; A. Bode ; K. Schilling

We introduce a new class of parallel algorithms for the exact computation of systems with pairwise mutual interactions of n elements, so called n2-problems. Hitherto, practical conventional parallelization strategies could achieve a complexity of O(np) with respect to the inter-processor communication, p being the number of processors. Our new approach can reduce the inter-processor communication complexity to a number O(np). In the framework of Additive Number Theory, the determination of the optimal communication pattern can be formulated as h-range minimization problem that can be solved numerically. Based on a complexity model, the scaling behavior of the new algorithm is numerically tested on the connection machine CM5. As a real life example, we have implemented a fast code for globular cluster n-body simulations, a generic n2-problem, on the CRAY T3D, with striking success. Our parallel method promises to be useful in various scientific and engineering fields like polymer chain computations, protein folding, signal processing, and, in particular, for parallel level-3 BLAS

Published in:

IEEE Transactions on Parallel and Distributed Systems  (Volume:9 ,  Issue: 2 )