By Topic

TIGER: an efficient timing-driven global router for gate array and standard cell layout design

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xianlong Hong ; Dept. of Comput. Sci. & Technol., Tsinghua Univ., Beijing, China ; Tianxiong Xue ; Jin Huang ; Chung-Kuan Cheng
more authors

In this paper, we propose an efficient timing-driven global router, TIGER, for gate array and standard cell layout design. Unlike other conventional global routing techniques, interconnection delays are modeled and included during the routing and rerouting process in order to minimize the maximum channel density for gate arrays or the total track number for standard cells, as well as to satisfy the timing constraints in TIGER. The timing-driven global routing problem is formulated as a multiterminal, multicommodity network flow problem with integer flows under additional timing constraints. Two novel performance-driven Steiner tree algorithms are proposed to generate the initial global routing trees. A critical-path-based timing analysis method is used to guarantee the satisfaction of timing constraints. Experimental results based on MCNC (ISCAS) benchmarks show that TIGER can obtain better results than or comparable results with TimberWolf 5.6

Published in:

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems  (Volume:16 ,  Issue: 11 )