By Topic

Solving Boolean equations using ROSOP forms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wang, Yuke ; Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, Que., Canada ; McCrosky, C.

Boolean equations are important tools in digital logic. Previous algorithms for solving Boolean equations are based on the Boolean algebra of disjoint SOP forms. In this paper, we develop a new Boolean algebra with more efficient Boolean operation algorithms, called the reduced ordered SOP (ROSOP) forms, which are canonical representations. ROSOPs are closely related to the well-known OBDD data structure. The results here also show the algebraic structure of OBDDs

Published in:

Computers, IEEE Transactions on  (Volume:47 ,  Issue: 2 )