Cart (Loading....) | Create Account
Close category search window

Channel estimation for OFDM systems based on comb-type pilot arrangement in frequency selective fading channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Meng-Han Hsieh ; Dept. of Electron. Eng., Nat. Chiao Tung Univ., Hsinchu, Taiwan ; Che-Ho Wei,

The channel estimation methods for OFDM systems based on a comb-type pilot sub-carrier arrangement are investigated. The channel estimation algorithm based on comb-type pilots is divided into pilot signal estimation and channel interpolation. The pilot signal estimation based on LS or MMSE criteria, together with channel interpolation based on piecewise-linear interpolation or piecewise second-order polynomial interpolation is studied. Owing to the MMSE estimate of the pilot signals, the inter-carrier interference and additive white Gaussian noise are reduced considerably. The computational complexity of pilot signal estimation based on MMSE criterion can be reduced by using a simplified LMMSE estimator with low-rank approximation using singular value decomposition. Phase compensators before and after interpolation are also presented to combat the phase changes of subchannel symbols arising from the frame synchronization errors. Compared to the transform-domain processing based channel estimation algorithm the MMSE estimate of pilot signals together with phase compensated linear interpolation algorithm provides a better performance and requires less computations

Published in:

Consumer Electronics, IEEE Transactions on  (Volume:44 ,  Issue: 1 )

Date of Publication:

Feb 1998

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.