By Topic

A Bit Allocation Method for Sparse Source Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kaaniche, M. ; Lab. de Traitement et Transp. de l'Inf., Univ. Paris 13, Villetaneuse, France ; Fraysse, A. ; Pesquet-Popescu, B. ; Pesquet, J.-C.

In this paper, we develop an efficient bit allocation strategy for subband-based image coding systems. More specifically, our objective is to design a new optimization algorithm based on a rate-distortion optimality criterion. To this end, we consider the uniform scalar quantization of a class of mixed distributed sources following a Bernoulli-generalized Gaussian distribution. This model appears to be particularly well-adapted for image data, which have a sparse representation in a wavelet basis. In this paper, we propose new approximations of the entropy and the distortion functions using piecewise affine and exponential forms, respectively. Because of these approximations, bit allocation is reformulated as a convex optimization problem. Solving the resulting problem allows us to derive the optimal quantization step for each subband. Experimental results show the benefits that can be drawn from the proposed bit allocation method in a typical transform-based coding application.

Published in:

Image Processing, IEEE Transactions on  (Volume:23 ,  Issue: 1 )