By Topic

Sensor Deployment and Scheduling for Target Coverage Problem in Wireless Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Mini, S. ; Dept. of Comput. Sci. & Eng., Central Univ. of Rajasthan, Ajmer, India ; Udgata, S.K. ; Sabat, S.L.

Network lifetime plays an integral role in setting up an efficient wireless sensor network. The objective of this paper is twofold. The first one is to deploy sensor nodes at optimal locations such that the theoretically computed network lifetime is maximum. The second is to schedule these sensor nodes such that the network attains the maximum lifetime. Thus, the overall objective of this paper is to identify optimal deployment locations of the given sensor nodes with a pre-specified sensing range, and to schedule them such that the network lifetime is maximum with the required coverage level. Since the upper bound of the network lifetime for a given network can be computed mathematically, we use this knowledge to compute locations of deployment such that the network lifetime is maximum. Further, the nodes are scheduled to achieve this upper bound. In this paper, we use artificial bee colony algorithm and particle swarm optimization for sensor deployment problem followed by a heuristic for scheduling. A comparative study shows that artificial bee colony algorithm performs better for sensor deployment problem. The proposed heuristic was able to achieve the theoretical upper bound in all the experimented cases.

Published in:

Sensors Journal, IEEE  (Volume:14 ,  Issue: 3 )