By Topic

Multi-Commodity Network Flow for Tracking Multiple People

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ben Shitrit, H. ; Ecole Polytech. Fed. de Lausanne, Lausanne, Switzerland ; Berclaz, J. ; Fleuret, F. ; Fua, P.

In this paper, we show that tracking multiple people whose paths may intersect can be formulated as a multi-commodity network flow problem. Our proposed framework is designed to exploit image appearance cues to prevent identity switches. Our method is effective even when such cues are only available at distant time intervals. This is unlike many current approaches that depend on appearance being exploitable from frame-to-frame. Furthermore, our algorithm lends itself to a real-time implementation. We validate our approach on three publicly available datasets that contain long and complex sequences, the APIDIS basketball dataset, the ISSIA soccer dataset, and the PETS'09 pedestrian dataset. We also demonstrate its performance on a newer basketball dataset that features complete world championship basketball matches. In all cases, our approach preserves identity better than state-of-the-art tracking algorithms.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:36 ,  Issue: 8 )