Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Active Learning without Knowing Individual Instance Labels: A Pairwise Label Homogeneity Query Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yifan Fu ; Sch. of Comput. & Math., Charles Sturt Univ., Bathurst, NSW, Australia ; Bin Li ; Xingquan Zhu ; Chengqi Zhang

Traditional active learning methods require the labeler to provide a class label for each queried instance. The labelers are normally highly skilled domain experts to ensure the correctness of the provided labels, which in turn results in expensive labeling cost. To reduce labeling cost, an alternative solution is to allow nonexpert labelers to carry out the labeling task without explicitly telling the class label of each queried instance. In this paper, we propose a new active learning paradigm, in which a nonexpert labeler is only asked “whether a pair of instances belong to the same class”, namely, a pairwise label homogeneity. Under such circumstances, our active learning goal is twofold: (1) decide which pair of instances should be selected for query, and (2) how to make use of the pairwise homogeneity information to improve the active learner. To achieve the goal, we propose a “Pairwise Query on Max-flow Paths” strategy to query pairwise label homogeneity from a nonexpert labeler, whose query results are further used to dynamically update a Min-cut model (to differentiate instances in different classes). In addition, a “Confidence-based Data Selection” measure is used to evaluate data utility based on the Min-cut model's prediction results. The selected instances, with inferred class labels, are included into the labeled set to form a closed-loop active learning process. Experimental results and comparisons with state-of-the-art methods demonstrate that our new active learning paradigm can result in good performance with nonexpert labelers.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:26 ,  Issue: 4 )