Cart (Loading....) | Create Account
Close category search window
 

Near Real-Time Flood Volume Estimation From MODIS Time-Series Imagery in the Indus River Basin

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Youngjoo Kwak ; Int. Centre for Water Hazard & Risk Manage. (ICHARM), UNESCO, Tsukuba, Japan ; Jonggeol Park ; Fukami, K.

Satellite images have been widely applied in near real-time flood inundation maps in many cases. Such images have significant potential to predict the time, place and scale of a flood event, and can be very useful in emergency response efforts. The detection of floodwaters and the estimation of flood volumes are important to determine a hazard in flood risk. In this study, we conducted surface water detection based on the spatial distribution of the 2010 Indus River flood, which affected the entire Pakistan area. A modified surface water index derived from near-real-time Moderate Resolution Imaging Spectrometer (MODIS) images coupled with a digital elevation model (DEM) was used. We also developed and applied a simplified algorithm to extract the 3D volume of floodplain surface water considering surface heights. The results found that the MODIS-DEM combined approach was feasible for automatic, instant flood detection. This approach shows a methodological possibility as an integrated algorithm for producing flood maps at local to global scales.

Published in:

Selected Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of  (Volume:7 ,  Issue: 2 )

Date of Publication:

Feb. 2014

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.